
Pädagogische Horizonte, 2(2), 2018
ISSN 2523-5656 (Online) | ISSN 2523-2916 (Print) 

Private Pädagogische Hochschule der Diözese Linz, Austria

pädagogische
HORIZONTEHORIZONTE

Automated reasoning in elementary geometry:  
towards inquiry learning

Beatrix Hauera, Zoltán Kovácsa1, Tomás Reciob1, M. Pilar Vélez c1
a The Private University College of Education of the Diocese of Linz, Austria 

b University of Cantabria, Santander, Spain, c University Antonio de Nebrija, Madrid, Spain 
zoltan@geogebra.org

1 Second, third and fourth authors were partially supported by the Spanish Research Project MTM2017-88796-P

submitted 12 MAR 2018 revised 06 oct 2018 accepted 10 Oct 2018

We claim that the inquiry-based learning approach to geometry can be im-
proved by considering a recently implemented algorithm for the automatic con-
jecturing and proving of elementary geometry statements. The new method  we 
describe relies on some Automated Reasoning Tools commands, now available 
in the dynamic geometry software GeoGebra, that provide with mathematically 
rigorous answers to any query posed by a user about the truth or falsity of any 
geometric statement and that, if the conjectured statement is wrong, present 
further hypotheses that should be considered for the pro position to become 
true. We argue, by providing examples of mathematical investigations that may 
be better approached by the students by using our method during the explo-
ration process, how these tools may be helpful for supporting inquiry-based 
learning at various education levels. Some of the potential implications of our 
proposal (such as providing to automated reasoning programs, for the first time, 
the possibility of a real impact in education, or the possibility of automatizing 
the development of automated mentors, etc.) are briefly stated. It is yet ongoing 
work to develop a systematic approach to confirm the benefits of the proposed 
method.
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1. Introduction

Educators' discussions on the potential role of software programs dealing with 
automatic theorem proving already appeared in papers published 30 years ago. 
The ICMI Study “School Mathematics in the 1990's” (Howson & Wilson, 1986) 
or the paper by P. Davis (1995), with a section that refers to the “transfiguration” 
power of computer-based proofs of geometry statements are clear examples of 
considerations about the future.
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The mathematical and computational background in the late 80s was already ma-
ture enough to allow implementing effective algorithms on automated reasoning 
in planar geometry. One of the remarkable first examples of successful automat-
ed experiments appear in the revolutionary book Chou (1988) that contains me-
chanical proofs of 512 geometry theorems, both including well known results and 
new ones. Later on, different several fruitful implementations have been made 
public such as the software programs Discover (Botana et al., 2002), GEOTHER 
(Wang, 2004), GeoProof (Narboux, 2007), Geometry Expert (Ye et al., 2011) and 
GeoGebra Automated Reasoning Tools (“GG-ART”, Botana et al., 2015, Abánades et 
al., 2016), among others.

On the other hand, as described in the recent review by Tessier-Baillargeon et 
al. (2017), several works have already addressed the development of intelligent tu-
torial systems to help students with proofs in geometry, such as GRAMY (Matsu-
da & Vanlehn, 2004), GeoGebraTutor (Tessier-Baillargeon el al., 2014) or QED-Tutrix 
(Leduc, 2016). It must be remarked that these computer-based, intelligent tutors 
do not rely on automated theorem proving programs: they rather emphasize the 
automated mentoring aspects on some concrete geometric situations through 
solving strategies previously stored in the program memory.

Yet both tools, automated tutorial and automated reasoning in geometry, 
seem to have had little impact till now in the classroom. Thus, a recent survey by 
Sinclair et al. (2016), including a full section on the role of technologies on geome-
try education and another one on “Advances in the understanding of the teaching 
and learning of the proving process”, do not include any reference to them.

In this context, our paper aims to illustrate the prospective classroom use of 
devices implementing automated reasoning in geometry, namely, by demonstrat-
ing, through the detailed description of some typical examples, the possibilities of 
GG-ART in an inquiry-based approach to mathematics education. This claim can 
be understood as the main thesis of this paper. As stated in Kovács et al., 2017, our 
proposal considers that “… GeoGebra ART is not merely a black box that produc-
es effects or reactions to actions determined by a waiting user. In fact, just as the 
ancients were questioning an oracle to predict what would happen in a given con-
text, the user employs an ART as a guiding stick in the geometric environment.”

As a main difference with the case of intelligent tutors, in our work the autom-
atism is not on the tutorial side, but on the availability for the student, through 
GG-ART, of some “omniscient” mathematical mentor, able to correctly answer 
his/her questions. Roughly speaking, the Automated Reasoning Tools, embedded 
in the dynamic geometry software GeoGebra, are able to output mathematical-
ly rigorous answers to any query posed by a user about the truth or falsity of 
any geometric statement. Moreover, if the conjectured statement turns out to 
be wrong, GG-ART present further hypotheses that should be considered for the 
proposition to become true.
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 In this context, the key scenario we are regarding for the application of GG-
ART is neither that of helping the student in some straightforward proving tasks 
(requiring just a yes/no answer), nor addressing “pseudo-experimental activities” 
(see Artigue, 2012, Figure 1), leading students “step by step along a worksheet”. 
Rather, in our paper we are considering authentic inquiry-based approaches, re-
quiring the handling of geometric situations through the formulation of differ-
ent conjectures that could be checked by obtaining reliable and mathematically 
rigorous information from the computer, by means of automated proofs being 
internally performed by the machine.

Figure 1. Example of a pseudo-experimental activity provided by Artigue (2012)

2. GeoGebra Automated Reasoning Tools

GG-ART are a collection of GeoGebra features and commands that allow to con-
jecture, discover, adjust and prove geometric statements in a dynamic geometric 
construction. Kovács et al. (2018) includes a complete tutorial illustrated with ex-
amples of these features.

To begin with GG-ART we have to draw a geometric construction in 
GeoGebra. Then we will exhibit the many possibilities that GeoGebra offers to 
enhance investigating and conjecturing about geometric properties of our con-
struction. Say: investigating visually; using the Relation tool to compare objects 
and to obtain relations; or using the Locus tool to learn about the trace of a 
point subject to some constraints. These methods are usually well known by the 
GeoGebra community and well documented at the GeoGebra Materials website  



4 Hauer, Kovács, Recio, & Vélez Automated reasoning in elementary geometry

(https://www.geogebra.org/materials). But these methods are mostly numeri-
cal, i.e. not mathematically rigorous, they only work on the specific construction 
with concrete coordinates, so they do not allow to deal with general statements.

GG-ART bring to GeoGebra new capabilities for automatic reasoning in Eu-
clidean plane geometry in an exact way, by using symbolic computations behind 
the concrete construction:
• The Relation tool and command can be now used to re-compute the results 

symbolically. When using the Relation tool, the user points on two objects 
(three or four objects can be also selected) and gets a message box. This mes-
sage box is shown with one or more true numerical statements on the objects, 
there may be a button “More…” shown if there is symbolic support for the 
given statement. When clicking “More…”, shortly the numerical statement 
will be updated to a more general symbolic one, stating or denying the va-
lidity of the relation for arbitrary instances of the given construction. We can 
use alternatively the following command: Relation[ <Object>, <Object> ].

• The LocusEquation command refines the result of the Locus command by 
displaying the algebraic equation of the graphical output, allowing to investi-
gate and conjecture statements. The command has two forms:
(1)  Its first, explicit form returns the algebraic equation of the output of the 

Locus command if an algebraic translation of the geometric setup is pos-
sible. That is, the mover point M conducts some dependent objects of it, 
including the tracer point T. The syntax of the command is: LocusEqua-
tion[ <Tracer Point>, <Mover Point> ].

(2)  Its second, implicit form starts by considering some construction steps 
and an input point P, either as a free point, or on a path in the con-
struction. Then, the user claims a Boolean condition that holds on some 
objects of the construction. The task is to determine an equation f(x,y)=0 
such that for all points Q=(x,y) of its geometric representation, if P = Q, 
then the given condition holds. Here f(x,y)=0 is called locus equation, and 
its graphical representation is the locus. The syntax of the command is: 
LocusEquation[ <Boolean Expression>, <Point> ].

There are also some other tools available in GG-ART for advanced uses, including 
envelope equation computations and direct proof of geometry statements. They 
are fully documented in Kovács et al. (2018).

3. Examples

Thales' circle theorem

To address Artigue's proposal on keeping the information secret that the locus of 
the solutions is related to a circle we demonstrate how Thales' theorem may be 

https://www.geogebra.org/materials
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taught via inquiry by using GG-ART. We also refer to Kovács and Schiffler (2017) 
that sketches up a possible approach.
An inquiry-based approach may consist of the following steps:
1.  It is crucial that the students need some mathematical knowledge about 

the algebraic equations of geometric objects including lines, circles, and also 
points (in the form of circles that have 0 radius).

2. Introduction of technical prerequisites for the students, including
 a) basic GeoGebra tools,
 b) and LocusEquation command in its implicit (second) form.
For the latter, here a key expectation is that the teacher should select introducto-
ry examples that enlighten the purpose of the LocusEquation command, but the 
theorem itself will be kept secret. Some possible introductory examples can be 
found in Lambert (2017).
3. Collecting some experimental data by using dynamic geometry based on exper-

iments from step 2a. The segment AB is given and the students have to find 
possible locations of vertex C in order to have the triangle ABC right. A possible 
prototype of this task can be found at https://www.geogebra.org/m/scequnqq  
as a GeoGebraBook. We emphasize here that this experiment is purely numer-
ical, that is no automated reasoning is used at this point yet.

Figure 2. Discovering Thales' circle theorem in GeoGebra

4.  Based on experiments from step 2b the students should formalize a GeoGebra 
command, namely LocusEquation(a⊥b,C) to get a proper answer for a par-

https://www.geogebra.org/m/scequnqq
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ticular position of AB (see Figure 2). Visually it should be clear that the ob-
tained curve is a circle, but for a justified answer mathematical knowledge 
from step 1 is also required. (In this particular position the equation should 
be rewritten to (x-1/2)2+y2=(1/2)2.) The equation of the circle is computed 
symbolically in GeoGebra: this step already uses automated reasoning.

5.  By dragging the end points of AB the locus curve will change dynamically. As 
a visual experiment it should be clear again that the curve always remains a 
circle. By investigating several positions algebraically also, by using step 1 again 
consecutively, there will be several examples where the conjecture holds. Here 
we emphasize that the speed of the symbolic and numerical algorithms used 
during automated reasoning are crucial in this experiment to get enough ex-
amples to get convinced.

6.  After having a strong conjecture, the students can get a closer look on the 
theorem by constructing a circle with diameter AB and check it, by using the 
Relation tool, if a and b are indeed perpendicular. For this step, again, symbol-
ic computations are used under the hood, but they are not shown to avoid 
the very technical details of the algebraic proof.

7.  Eventually, if there is enough interest and time for that in the classroom, a 
classic proof can also be performed to get a rigorous argumentation. Here we 
refer to the well known classic methods.

8.  Another inquiry can be initiated after concluding the truth of Thales' state-
ment. Namely, a generalization of it: What kind of statement(s) can be ob-
tained if the angle between a and b is not necessarily perpendicular? A pos-
sible solution of this task is sketched up at https://www.geogebra.org/m/
afpvF72v#material/RnKahyCS.

Further examples from the curriculum

By focusing on inquiry learning, many other topics in elementary geometry can 
be discussed in the classroom via GG-ART. Following Artigue (2012) here we will 
focus only on such topics where the answer may be kept secret, hence the inquiry 
learning can be authentic.

In this part of the paper we focus on experiments that are of form: “What is 
the geometric locus of…?” From the algebraic geometry point of view, the answers 
here are limited to algebraic curves. Being in the classroom, the degree of the 
appearing curves should be mostly 1 or 2, unless the teacher wants to introduce 
higher order algebraic curves. This is, actually unavoidable when the students 
start to do free experiments by using the LocusEquation tool (see Kovács, 2016) 
for simple experiments on a triangle, in particular obtaining a lemniscate that is 
of degree 4).

https://www.geogebra.org/m/afpvF72v#material/RnKahyCS
https://www.geogebra.org/m/afpvF72v#material/RnKahyCS
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The most straightforward way of locus experiments is to find converse statements 
of theorems from the curriculum, including:
1. (A converse of Pythagoras.) Given a triangle ABC with sides a, b and c. When 

AB is fixed, where to put C to have a2+b2=c2?
2. (A converse of the right altitude theorem.) Given a triangle ABC with sides a, 

b and c. Let p and q be the orthogonal projections of a and b to c, respectively, 
and let h be the altitude with respect to C. When AB is fixed, where to put C 
to have h2=pq?

3. (A converse of the intercept theorem.) A triangle with sides a+b, c+d and f is 
given as seen in Figure 3. A different split of side a+b is not allowed (that is, it 
is fixed), but for the side c+d the splitting point P can be freely chosen. Where 
to put P to have a/b=c/d?

Figure 3. A converse of the intercept theorem

Actually, in the two latter examples interesting extra components will appear in 
the resulting curves. In the second example the extra component is a hyperbola 
(the straightforward solution is the Thales circle of AB), see Abanades et al. (2016), 
while in the third one another line, parallel to a, appears (that is, the locus is a 
union of two parallel lines), see Kovács (2017).

Two other examples contain simpler equations, but the related statements 
may have interesting generalizations:
4.  (Triangle inequality and a definition of the ellipse.) Given a triangle ABC with 

sides a, b and c. Where to put C to have a+b=c? Or, to have a+b=2c? Or, to 
have a+b=3c? And how about a+2b=c? (This last one yields a quartic.)

5.  (Perpendicular bisector and Apollonius' circle, that is the set of points whose 
distances from two fixed points are in a constant ratio.) Given a triangle ABC 
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with sides a, b and c. When AB is fixed, where to put C to have a=b? And how 
about a=2b?

Generalizations of the first three examples are also possible, and may result in 
unexpected curves. For instance, in the third example the question is somewhat 
artificial: why exactly a/b=c/d is to be investigated? When studying instead, say, 
the relation ab=cd, surprising geometric objects can be “discovered”, but com-
pletely out of track of the curriculum (see Figure 4 and Kovács, 2017).

Figure 4. A surprising locus

Finally we mention two more tasks that can be used for inquiry learning and con-
veniently studied by GG-ART:
6.  Let a fixed square ABCD be given, and also a free point E. Where to put E in 

order to have the triangle ABE the same area as of the square?
7. When are the diagonals of a parallelogram perpendicular?

Real-life examples

The National Science Education Standards (1996) outline six important aspects 
pivotal to inquiry learning in science education in the United States, including the 
extent to which students are able to learn with deep understanding will influence 
how transferable their new knowledge is to real life contexts.

Here we show two basic real life examples that can be used to link inquiry 
learning as real world connections. The first task is to consider a kite (Figure 5) and 
collect interesting facts about it. It can be observed, for example, that the kite has 
a symmetry axis that goes through on two opposite vertices. This fact implies that 
the pink quadrilateral that joins the midpoints of the sides of the kite, is actually 



  Pädagogische Horizonte 2 | 2 2018 9

a rectangle. One can conclude that this figure is a special case of Varignon's theo-
rem that states that the midpoint quadrilateral is a parallelogram.
The technical steps for the student when using GG-ART are to carefully construct 
the geometrical model of the kite by using circles to establish equal lengths, ac-
cordingly, then create the midpoints, join them, and conclude generally true 
properties by dragging the free points and using the Relation tool.

Figure 5. A colored kite illustrating Figure 6. Cat on a ladder (King, 2016)
a special case of Varignon's theorem 

A second task we highlight is the locus of a falling cat that is sitting at a fixed 
position on a ladder which is sliding down wall (Figure 6). The task is about to de-
termine the geometric movement of the cat. This example is actually a reformula-
tion of the trammel of Archimedes, also known as an ellipsograph, that produces 
an elliptic motion (see Figure 7).

Figure 7. A possible solution of the task “cat on a ladder” by using GG-ART
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A possible solution of the inquiry is as follows. The floor is defined as line AB, and 
the wall as a perpendicular line to it at point A. Let C be an arbitrary point of the 
wall: this will play the role of the top of the ladder. The length of the ladder is de-
fined as the length of segment IJ. By drawing a circle with center C and radius IJ, 
the intersection point of the circle and the floor will designate the bottom of the 
ladder. The cat sits on the ladder and has a fixed distance GH from the top. There-
fore another circle with center C and radius GH designates the position E of the 
cat as an intersection of the ladder and this second circle. Finally the command 
LocusEquation(E,C), that is the first (explicit) form in GG-ART, computes and 
displays the motion curve of the cat, actually the fourth of an ellipse. The other 
three fourth of the inner ellipse and also the whole outer ellipse in Figure 7 do 
not play any role in the geometric solution of the task, they are just displayed as 
algebraic solutions that have no meaning in the real-life problem.

Let us highlight again that the solution of this problem consists of two ellipses. 
Discussing the properties or even the mathematical definition of an ellipse may 
be out of track of the curriculum in many countries. However, it is clear that many 
real-life problems involve the study of higher order curves, hence it seems to make 
sense to reconsider teaching conic sections at least at a basic level.

4. Conclusion

A potential approach for inquiry learning

In the previous sections we sketched up some possible inquiry tasks by using the 
dynamic geometry software tool GeoGebra and its novel automated reasoning 
tools. Despite the technology seems to be mature to support it, we admit that 
its classroom utilization is still in an experimental phase. By disseminating the 
availability of these novel tools we hope that automated reasoning could help 
students at various knowledge levels to start playing with their own experiments, 
and deepen their own mathematical thinking.

A relevant consideration here, regarding the potential impact of GG-ART in 
mathematics education, is the current availability of GeoGebra (GG), the pro-
gram over which we have implemented our automatic reasoning tools (ART), 
over computers, tablets and smartphones, with and without internet connection, 
and backed up by a well spread community of millions of teachers and students, 
all over the world. Thus, our methodological proposal is not just an academic 
disquisition, but could have a real effect in the development of an inquiry based 
geometry education. In this direction, our final goal should be to launch an open 
call to the community of maths teachers and maths education researchers, to 
help improving the applicability of this powerful and novel instrument.
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We have mentioned in the Introduction that our proposal differs from those 
related to automatic, intelligent tutoring in geometry, in that in our case the au-
tomatism is not on the tutoring protocol, but on the availability, for the student, 
of a tool with (roughly speaking) unlimited geometric knowledge. We think both 
approaches can be very useful as they are, in some sense, complementary, since 
GG-ART can be considered as a reliable augur, but the student needs as well some 
instructions—from an automated tutor—about what to ask to the prophet! Per-
haps we should go one further step ahead and consider, in the future, the possi-
bility of automatizing—by using GG-ART—the merging of both tools through the 
automatic creation of the tutoring devices… i.e. automatizing the elaboration of 
automated mentors! See Font et al. (2018) for a pioneer proposal in this direction.

Further work towards inquiry learning

In our on-going research, focusing on inquiry learning, another important aim is 
to study if
• using GG-ART as a learning activity makes inquiry learning for students indeed 

possible,
• and to which extent the criteria of inquiry learning are fulfilled.
A later step should be, based on the study, to improve GG-ART to be compliant 
with inquire learning to a high extent.

For the first viewpoint of the study we will focus on Ulm (2009, p. 90) that ar-
gues that inquiry learning takes place if learners at least partially get familiar with 
a topic area which was unknown to them and seemed complex before by means 
of independent cognitive activity.

The construct inquiry learning can be made quantifiable by use of a special 
post-interventional inventory called Criteria of Learning Inventory (CILI). The in-
ventory, first published by Reitinger (2016), can be used as a standardized inven-
tory to measure the evolvement of inquiry learning within educational learning 
settings in tertiary education (Reitinger, 2016, p. 55).

In particular we plan to study if the learning-setting with GG-ART allows inqui-
ry learning according to the criteria of inquiry leaning to a concept of Reitinger's. 
The theoretical partial construct embodied in the inventory are Experience-based 
Hypothesing, Authentic Exploration, Critical Discourse, and Conclusio-based Trans-
fer. These constructs are operation into twelve English-language items that refer 
to an experienced learning activity (Reitinger, 2016, p. 45).
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